4. ПОСТРОЕНИЕ МОДЕЛЕЙ НАДЕЖНОСТИ

4.1. Структурная надежность. Расчет надежности

Системы, состоящие из подсистем, которые могут быть выделены по функциональным и пространственным признакам, имеют структуру. Если система состоит из подсистем $e_1, e_2, e_i, \dots e_n$, которые называют элементами, то она также как и элементы может находиться либо в работоспособном состоянии, либо в состоянии отказа.

Структурная надежность — это результирующая надежность системы при заданной структуре и известных значениях надежности всех входящих в нее блоков или элементов.

Для расчета надежности системы используются структурные схемы — *модели надежности систем*, представляющие собой ненаправленный граф с входной и выходной вершинам, каждый элемент которого соответствует одному элементу системы.

Модель надежности системы строится на основе анализа влияния определенного вида отказов элементов на надежность системы в целом. Чаще всего структурная схема системы, построенная для решения задач надежности, не совпадает с функциональной схемой системы или конструктивной схемой соединения ее элементов (электрические автоматы-выключатели).

Состояние системы однозначно определяется состоянием её элементов и зависит от её структуры. С точки зрения надежности различают *последова- тельные*, *параллельные* и *системы* со сложной структурой.

Расчёт надежности при последовательном (основном) соединении элементов

При таком соединении отказ технического изделия наступает при отказе одного из его узлов. Т.е. работоспособность основной системы обеспечивается при условии, когда все N элементов системы находятся в работоспособном состоянии. Например, контур ACP температуры, состоящий из датчика температуры TE, контролера TIC и регулирующего клапана (103-3).

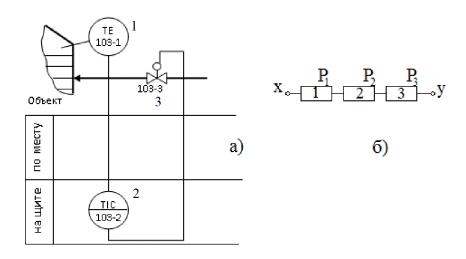


Рисунок 4.1 — Пример последовательного соединения элементов: a) — схема автоматизации; δ) — модель надежности

Поскольку события, заключающиеся в работоспособности элементов системы, являются независимыми, то случайная наработка последовательной системы, состоящей из N элементов

$$T_{0c} = \min\{T_{01}, T_{02}, T_{0i}, ..., T_{0N}\}.$$

где T_{0i} — наработки элементов системы.

Отсюда согласно теореме умножения вероятностей

$$P(T_{0c} > t) = P(T_{01} > t, \dots, T_{0N} > t) = P(T_{01} > t) \cdot \dots \cdot P(T_{0N} > t)$$

 $P_1,...P_i$ – надежность отдельных элементов системы.

Тогда ВБР всей системы:

$$P_c(t) = P_1(t)P_2(t)...P_N(t) = \prod_{i=1}^{N} P_i(t).$$

Интенсивность отказов последовательной системы равна сумме интенсивностей отказов её элементов:

$$\lambda_c(t) = \lambda_1(t) + \dots + \lambda_N(t)$$
.

При *экспоненциальном распределении* наработки до отказа для каждого из элементов (отказы только внезапные):

$$P_{c}(t) = e^{-\lambda_{c}t}; T_{0c} = \int_{0}^{\infty} P_{c}(t)dt = \int_{0}^{\infty} e^{-\lambda_{c}t}dt = \frac{1}{\lambda_{c}}.$$

Таким образом, при экспоненциальной наработке до отказа каждого из п элементов, распределение наработки до отказа системы также подчиняется экспоненциальному распределению.

Для последовательного соединения элементов надежность системы меньше надежности каждого из элементов. С увеличением числа элементов надежность системы уменьшается. Например, при N=1000; $P_i(t)=0.99$; $P_c(t) < 10^{-4}$ и средняя наработка до отказа системы в 1000 раз меньше средней наработки каждого из элементов.

Расчёт надежности при нагруженном резервировании элементов

Рассматривается система, состоящая из одного основного и (N-1) резервных элементов. При условии, что отказы элементов независимы, отказ системы происходит только при отказе всех N элементов. Т.е. система работоспособна, пока работоспособен хотя бы один элемент или существует, по крайней мере, один путь от входного сигнала к выходному.

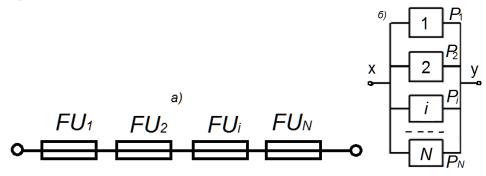


Рисунок 4.2 — Пример параллельного соединения элементов: a) — схема монтажная предохранителей; δ) — модель надежности

Случайная наработка нагружено резервированной системы, состоящей из N независимых элементов равна

$$T_{0c} = \max\{T_{01}, T_{02}, T_{0i}, ..., T_{0N}\}.$$

где T_{0i} — наработки элементов системы.

Отсюда согласно теореме умножения вероятностей

$$P(T_{0c} > t) = 1 - P(T_{0c} \le t) = 1 - P(T_{01} \le t, ..., T_{0N} \le t) = 1 - P(T_{01} \le t, ..., P(T_{0N} \le t))$$
а вероятность отказа нагружено резервированной системы, состоящей из N независимых элементов, равна произведению вероятностей всех элементов

$$Q_c(t) = Q_1(t)Q_2(t)...Q_N(t) = \prod_{i=1}^{N} Q_i(t).$$

Тогда ВБР всей системы:

$$P_c(t) = 1 - \prod_{i=1}^{N} Q_i(t) = 1 - \prod_{i=1}^{N} (1 - P_i(t)).$$

При *экспоненциальном распределении* наработки до отказа для каждого из равнонадежных элементов (отказы только внезапные)

$$P_c(t) = 1 - \left(1 - e^{-\lambda t}\right)^N.$$

Функция плотности распределения ВБР системы:

$$f_c(t) = -\frac{dP_c(t)}{dt} = \lambda N e^{-\lambda t} \left(1 - e^{-\lambda t} \right)^{N-1}.$$

Интенсивность отказов системы:

$$\lambda_c(t) = \frac{f_c(t)}{P_c(t)} = \frac{\lambda N e^{-\lambda t} \left(1 - e^{-\lambda t}\right)^{N-1}}{1 - \left(1 - e^{-\lambda t}\right)^{N}}.$$

Из выражения видно, что при t = 0 $\lambda_c(t) = 0$ и с увеличением времени растет, достигая при $t \to \infty$ интенсивности отказов одного элемента λ .

Среднее время безотказной работы нагружено резервированной системы

$$T_{0c} = \int_{0}^{\infty} P_{c}(t) dt = \int_{0}^{\infty} \left(1 - \left(1 - e^{-\lambda t}\right)^{N}\right) dt = \frac{1}{\lambda} \sum_{k=1}^{N} \frac{1}{k} = T_{0} \sum_{k=1}^{N} \frac{1}{k}.$$

Из выражения видно, что увеличение кратности резервирования приводит к менее значительному увеличению средней наработки до отказа системы.

Расчёт надежности при кратном резервировании элементов

При резервировании с дробной кратностью нормальная работа резервированного соединения возможна при условии, если число исправных элементов не меньше необходимого для нормальной работы. Кратность резервирования определяется из соотношения

$$m = \frac{Z - N}{N} = \frac{K}{N}$$

где Z — общее число элементов расчета резервированного соединения; N — число основных элементов, необходимое для нормальной работы соединения; (Z-N)=K — число резервных элементов.

Пусть резервированная система состоит из N основных и K резервных элементов (N > K). При отказе одного из основных элементов, на его место без перерыва в работе включается один из резервных (резервные элементы также могут отказывать). Таких замещений, не нарушающих работу резервированной системы в целом, не может быть больше K. Средняя наработка до отказа такой резервированной системы в предположении абсолютно надежных переключающих устройств и равнонадежных элементов с интенсивностью отказов каждого λ равна

$$T_{0c} = \frac{1}{\lambda} \left(\frac{1}{N} + \frac{1}{N+1} + \dots + \frac{1}{N-K} \right)$$
 при $(N > K)$.

Безотказная работа системы в течение времени t будет иметь место, если за это время осуществится хотя бы одна из гипотез: H_o — все элементы исправны; H_l — один элемент отказал, (K+N-1) элементов исправны; (H_i-i) элементов отказали, (K+N-i) элементов исправны; $(H_\kappa-K)$ элементов отказали, N элементов исправны. Число различных вариантов равно

$$C_{N+K}^{i} = \frac{(N+K)!}{i!(K+N-i)!}.$$

Тогда ВБР системы можно определить из выражения

$$P_{c}(t) = \sum_{i=0}^{K} C_{N+K}^{i} \left[1 - P(t) \right]^{i} \left[P(t) \right]^{N+K-i},$$

где P(t) — вероятность безотказной работы элемента при условии, что все элементы равнонадежны. Для мажоритарного резервирования по схеме «2 из 3» вероятность безотказной работы системы можно подсчитать по формуле

$$P_c(t) = P_M(t) [3P^2(t) - 2P^3(t)],$$

где P(t) — ВБР одного канала (элемента, подсистемы); $P_{M}(t)$ — ВБР мажоритарного органа.